Watertools
blank 简体中文版 English Version
产品列表
公司动态 MORE ►
 
产品介绍   Product Description
德国HYDRO-BIOS公司浮游生物多联采样网 名称: 德国HYDRO-BIOS公司浮游生物多联采样网
类别: 浮游生物分层采样网
型号: MultiNet
关键字: 浮游生物多联采样网,浮游生物分层拖网,浮游生物网
产品简介: MultiNet浮游生物多联采样网用于海洋浮游生物连续分层采样
供应商: 青岛水德仪器有限公司
详细介绍

MultiNet浮游生物多联采样网
Multi Plankton Sampler MultiNet



垂直操作状态                  水平操作状态

浮游生物多联采样网MultiNet®是世界顶级的浮游生物自动采样器,它可以在连续的水层中进行水平采样和垂直采样。每个MultiNet®安装5只(9只)网袋:Mini型,0.125m2;Midi型,0.25m2,Maxi型,0.5m2;Mammoth型,1 m2

整个系统由甲板控制单元和一个不锈钢框架组成,5(9)只网袋通过拉链连接器连接在不锈钢框架的帆布部分上。

网袋的开启与关闭是通过一个电池驱动的马达单元激发的。控制网袋开关的指令时通过甲板控制单元和水下单元之间的单芯和多芯电缆传输的。我们可以提供各种网袋,适用于各种标准的和非标准的应用场合。对于常规的水平采样操作,我们推荐您使用孔径为300微米(孔径从100微米至500微米都是可选的)的网袋;对于垂直采样来说,网孔大小从55微米到500微米都是适用的。

水下单元中集成一个压力传感器,深度和所有其他系统相关数据会一起在甲板控制单元的液晶显示屏上显示。

水下单元上可以安装两个带有角度补偿的功能的电子网口流量计:一个装在水下单元的开口内,用于测定通过网口的水量;另一个装在水下单元开口外,用于测定“堵塞效应”。
在水平采样操作中,MultiNet®安装了一个V-Fin深度抑制器;在垂直采样操作时,一个不锈钢支撑安装在网底管固定器上,以便垂直采样时,采样网能够安全迅速地降到所需的深度。


操作
在初始位置的时候,MultiNet®上的所有网袋是关闭的。水流可以很自由地流过框架,并允许采样器以最适合的速度降到最期望的深度,然后按下甲板单元上的按钮,可以使第一个网袋打开,当操作结束时,可以通过第二个指令将其关闭。在第一个网袋关闭的同时,第二个网袋会接着打开,当甲板单元显示激活的网袋号码时,这些网袋会重复以上过程。在操作Mini型和Midi型MultiNet®t时,第5个网袋保持敞开状态,它会收集从最浅期望深度到表层的浮游生物。在操作Maxi型和Mammoth型MultiNet®时,第9个网袋可以在到达水面之前闭合。 

离线组件
MultiNet系统标配离线组件,在电缆无法获得情况下,可以通过电脑对采样深度进行预编程。有了离线组件后,网袋的闭合可以根据预先设定好的深度间隔自动进行。在操作过程中,所有的测量数据都会存储到离线组件中,当操作结束时,这些数据可以通过OceanLab软件下载到电脑上进行处理。

CT组件
MultiNet®与CT组件结合在一起,拥有一台CTD(温盐深仪)的完整功能。CT组件由一个电导率传感器,一个温度传感器和一块附加电路板组成,它们集成在MultiNet®的马达驱动单元中。根据UNESCO公式,系统可以从获得的CTD数据,计算出盐度、密度和声速等指标。

额外选择
√各种参数的传感器,如盐度、温度、叶绿素a、浊度、姿态传感器等
√电池供电的手持终端,当在线操作没有交流电供电时,用来代替甲板控制单元
√适用于6000米采样的特殊型号
√适用于11000米全海深采样的特殊型号

特性
√水平操作和垂直操作
√容易操作
√双向通讯
√标准深度3000米
√可选深度6000米 / 11000米
√长距离FSK自动测量记录传导
√低电量消耗
√电池供电的水下单元,导线上最大电压5V
√EC-认证(CE)EN 50081-1,EN 50082-1
√操作温度范围-40℃ ~ +85℃

MultiNet订购指南:
438 120 Mini型MultiNet®
               a. 不锈钢网框架,开口大小为35.5cm×35.5cm=0.125m2
                   带集成压力传感器(0-3000dbar±0.1%f.s.)的马达单元和钛制电池舱,带拉链结合器的帆布部分
               b. 5个带有拉链结合器的网袋,标准网孔大小300微米(或者用户指定)
               c. 5个塑料网底管,直径11cm,上面覆盖有筛绢
               d. 不锈钢网底管固定器
               e. 2根索绳
               f. V-Fin深度抑制器,22kg
               g. 不锈钢支撑
               h. 甲板控制单元,交流电源供电(85-260V AC)
               i. 基于Windows的HYDRO-BIOS操作软件,用来控制整个MultiNet®系统
               j. 离线组件, 用于无法获得电缆的情况下操作MultiNet
               k. 2台电子网口流量计,适用于流速为0.1m/s至9.9m/s采样环境
438 130 Midi型MultiNet®
               a. 不锈钢网框架,开口大小为50cm×50cm=0.25m2
                   带集成压力传感器(0-3000dbar±0.1%f.s.)的马达单元和钛制电池舱,带拉链结合器的帆布部分
               b. 5个带有拉链结合器的网袋,标准网孔大小300微米(或者用户指定)
               c. 5个塑料网底管,直径11cm,上面覆盖有筛绢
               d. 不锈钢网底管固定器
               e. 2根索绳
               f. V-Fin深度抑制器,22kg
               g. 不锈钢支撑
               h. 甲板控制单元,交流电源供电(85-260V AC)
               i. 基于Windows的HYDRO-BIOS操作软件,用来控制整个MultiNet®系统
               j. 离线组件, 用于无法获得电缆的情况下操作MultiNet
               k. 2台电子网口流量计,适用于流速为0.1m/s至9.9m/s采样环境
438 140 Maxi型MultiNet®
               a. 不锈钢网框架,开口大小为71cm×71cm=0.5m2
                   带集成压力传感器(0-3000dbar±0.1%f.s.)的马达单元和钛制电池舱,带拉链结合器的帆布部分
               b. 9个带有拉链结合器的网袋,标准网孔大小300微米(或者用户指定)
               c. 9个塑料网底管,直径11cm,上面覆盖有筛绢
               d. 不锈钢网底管固定器
               e. 2根索绳
               f. V-Fin深度抑制器,70kg
               g. 不锈钢支撑
               h. 甲板控制单元,交流电源供电(85-260V AC)
               i. 基于Windows的HYDRO-BIOS操作软件,用来控制整个MultiNet®系统
               j. 离线组件, 用于无法获得电缆的情况下操作MultiNet
               k. 2台电子网口流量计,适用于流速为0.1m/s至9.9m/s采样环境
438 180 Mammoth型MultiNet®
               a. 不锈钢网框架,开口大小为100cm×100cm=1m2
                   带集成压力传感器(0-3000dbar±0.1%f.s.)的马达单元和钛制电池舱,带拉链结合器的帆布部分
               b. 9个带有拉链结合器的网袋,标准网孔大小300微米(或者用户指定)
               c. 9个塑料网底管,直径11cm,上面覆盖有筛绢
               d. 不锈钢网底管固定器
               e. 2根索绳
               f. V-Fin深度抑制器,70kg
               g. 不锈钢支撑
               h. 甲板控制单元,交流电源供电(85-260V AC)
               i. 基于Windows的HYDRO-BIOS操作软件,用来控制整个MultiNet®系统
               j. 离线组件, 用于无法获得电缆的情况下操作MultiNet
               k. 2台电子网口流量计,适用于流速为0.1m/s至9.9m/s采样环境
438 161 姿态传感器,用于MultiNet®系统
               +60°…-60° ±1° 倾斜角度
               +60°…-60° ±1° 滚动角度
450 500 CT组件,用于MultiNet®系统
               电导率传感器:0~65±0.01mS/cm;温度传感器:-2~+32±0.005℃;采样频率:1Hz
 
MultiNet技术参数:
 

水下单元
小型Mini
中型Midi
大型Maxi
猛犸象型Mammoth
尺寸:宽*长*高
65*90*80cm
80*90*95cm
120*110*135cm
150*120*160cm
网开口
35.5*35.5cm
50*50cm
71*71cm
100*100cm
网袋
5个/160cm长
5个/250cm长
9个/365cm长
9个/550cm长
标准网孔大小
300μm
300μm
300μm
300μm
网底管
5个/直径11cm
5个/直径11cm
9个/直径11cm
9个/直径11cm
工作时系统总长度
470 cm
560cm
800cm
1000cm
标准工作深度
3000m(6000m可选)
3000m(6000m可选)
3000m(6000m可选)
3000m(6000m可选)
压力传感器
3000.0dbar±0.1%f.s.
(其他范围可选)
3000.0dbar±0.1%f.s.
(其他范围可选)
3000.0dbar±0.1%f.s.
(其他范围可选)
3000.0dbar±0.1%f.s.
(其他范围可选)
重量
网框
75kg
100kg
260kg
390kg
不锈钢支撑
30kg
50kg
70kg
100kg
V-Fin深度抑制器
22Kg
22Kg
70Kg
70Kg
材质
 
网框
不锈钢
不锈钢
不锈钢
不锈钢
马达单元和电池舱
钛合金
钛合金
钛合金
钛合金
网袋
聚酰胺
聚酰胺
聚酰胺
聚酰胺
网底管
PVC
PVC
PVC
PVC
V-Fin深度抑制器
断裂负载
浅水工作(0-500m)
约1500kg
约2000kg
约4000kg
约8000kg
深水工作(500-3000m)
约5000kg
约8000kg
约12000kg
约18000kg
电气连接参数
连接插头
SUBCONN BH 2 M
SUBCONN BH 2 M
SUBCONN BH 2 M
SUBCONN BH 2 M
电缆反向插头
SUBCONN IL 2 F
SUBCONN IL 2 F
SUBCONN IL 2 F
SUBCONN IL 2 F
电缆连接
单芯或多芯电缆
单芯或多芯电缆
单芯或多芯电缆
单芯或多芯电缆
电缆最大电阻(回路)
1000Ω
1000Ω
1000Ω
1000Ω
甲板控制单元
通过按钮控制网袋的闭合,显示网袋序号,压力,电池状态,通过网口的水的流量和流速等;带LED背景光的液晶显示器;与PC连接的RS232接口
电源
水下单元
3节3V锂电池供电
3节3V锂电池供电
3节3V锂电池供电
3节3V锂电池供电
甲板控制单元
85-260V AC
85-260V AC
85-260V AC
85-260V AC
拖网速度(当网袋的孔径为300μm时)
水平操作
最大4knots
最大4knots
最大4knots
最大4knots
垂直操作
最大1m/s
最大1m/s
最大1m/s
最大1m/s

代表文献:
1.H. Weikert and H.-Ch. John,1981.Experiences with a modified Bé multiple opening-closing plankton net.Journal of Plankton Research.3(2):167-176.
2.Smith, Sharon L.,1988.Copepods in Fram Strait in summer: Distribution, feeding and metabolism.Journal of Marine Research.46(1):145-181(37).
3.Jürgen Lenz, Alvaro Morales, Judith Gunkel,1993.Mesozooplankton standing stock during the North Atlantic spring bloom study in 1989 and its potential grazing pressure on phytoplankton: a comparison between low, medium and high latitudes.Deep Sea Research Part II: Topical Studies in Oceanography.40(1–2):559–572.
4.H.G. Fransz, S.R. Gonzalez,1997.Latitudinal metazoan plankton zones in the antarctic circumpolar current along 6°W during austral spring 1992.Deep Sea Research Part II: Topical Studies in Oceanography.44(1–2):395–414.
5.S. Sundby, A. J. Boyd, L. Hutchings, M. J. O'Toole, K. Thorisson & A. Thorsen,2001.Interaction between Cape hake spawning and the circulation in the northern Benguela upwelling ecosystem.South African Journal of Marine Science.23(1):317-336.
6.Elisabeth Halvorsen, Kurt S. Tande, Are Edvardsen, Dag Slagstad, Ole Petter Pedersen,2003.Habitat selection of overwintering Calanus finmarchicus in the NE Norwegian Sea and shelf waters off Northern Norway in 2000–02.Fisheries Oceanography.12(4-5):339–351.
7.Holger Auel, Iris Werner,2003.Feeding, respiration and life history of the hyperiid amphipod Themisto libellula in the Arctic marginal ice zone of the Greenland Sea.Journal of Experimental Marine Biology and Ecology.296(2):183–197.
8.Gustavo Alvarez Colombo, Hermes Mianzan and Adrian Madirolas,2003.Acoustic characterization of gelatinous plankton aggregations: four case studies from the Argentine continental shelf.Journal of Marine Science.60(3):650-657.
9.Brierley, Andrew S., Boyer, David C., Axelson, Bjorn Erik, Lynam, Christopher P., Sparks, Conrad A.J., Boyer, Helen, Gibbons, Mark J.,2005.Towards the acoustic estimation of jellyfish abundance.Marine Ecology Progress Series.295: 105-111.
10.FOSSHEIM Maria, MENG ZHOU, TANDE Kurt S., PEDERSEN Ole-Petter, YIWU ZHU, EDVARDSEN Are,2005.Interactions between biological and environmental structures along the coast of northern Norway.Marine Ecology Progress series.300:147-158.
11.Heino Fock & Hans-Christian John,2006.Fish larval patterns across the Reykjanes Ridge.Marine Biology Research.2(3):191-199.
12."Katarzyn Blachowiak-Samolyk, Slawek Kwasniewski, Katherine Richardson,
Katarzyna Dmoch, Edmond Hansen, Haakon Hop, Stig Falk-Petersen,
Lone Thybo Mouritsen",2006.Arctic zooplankton do not perform diel vertical migration (DVM) during periods of midnight sun.Marine Ecology Progress series.308:101–116.
13.Holger Auel, Hans M. Verheye,2007.Hypoxia tolerance in the copepod Calanoides carinatus and the effect of an intermediate oxygen minimum layer on copepod vertical distribution in the northern Benguela Current upwelling system and the Angola–Benguela Front.Journal of Experimental Marine Biology and Ecology.352(1):234–243.
14.Martin O. Macnaughton, Jonas Thormar, Jørgen Berge,2007.Sympagic amphipods in the Arctic pack ice: redescriptions of Eusirus holmii Hansen, 1887 and Pleusymtes karstensi (Barnard, 1959).Polar Biology.30(8):1013-1025.
15.H. Habeebrehman, M.P. Prabhakaran, Josia Jacob, P. Sabu, K.J. Jayalakshmi, C.T. Achuthankutty, C. Revichandran,2008.Variability in biological responses influenced by upwelling events in the Eastern Arabian Sea.Journal of Marine Systems.74(1–2):545–560.
16.Katarzyna Blachowiak-Samolyk, Slawek Kwasniewski, Haakon Hop and Stig Falk-Petersen,2008.Magnitude of mesozooplankton variability: a case study from the Marginal Ice Zone of the Barents Sea in spring.Journal of Plankton Research.30(3):311-323.
17.Marina E. Sabatini,2008.Life history trends of copepods Drepanopus forcipatus (Clausocalanidae) and Calanus australis (Calanidae) in the southern Patagonian shelf (SW Atlantic).Journal of Plankton Research.30(9):981-996.
18.Veronica Fernandes, N. Ramaiah,2009.Mesozooplankton community in the Bay of Bengal (India): spatial variability during the summer monsoon.Aquatic Ecology.43(4):951-963.
19.Silke Laakmann, Marc Kochzius, Holger Auel,2009.Ecological niches of Arctic deep-sea copepods: Vertical partitioning, dietary preferences and different trophic levels minimize inter-specific competition.Deep Sea Research Part I: Oceanographic Research Papers.56(5):741–756.
20.Olli Urpanen, Timo J. Marjomäki, Markku Viljanen, Hannu Huuskonen, Juha Karjalainen,2009.Population size estimation of larval coregonids in large lakes: Stratified sampling design with a simple prediction model for vertical distribution.Fisheries Research.96(1):109–117.
21.Anne Lebourges-Dhaussy, Janet Coetzee, Larry Hutchings, Gildas Roudaut and Cornelia Nieuwenhuys,2009.Zooplankton spatial distribution along the South African coast studied by multifrequency acoustics, and its relationships with environmental parameters and anchovy distribution.ICES Journal of Marine Science.66(6):1055-1062.
22.Silke Laakmann, Meike Stumpp, Holger Auel,2009.Vertical distribution and dietary preferences of deep-sea copepods (Euchaetidae and Aetideidae; Calanoida) in the vicinity of the Antarctic Polar Front.Polar Biology.32(5):679-689.
23.Holger Auel, Werner Ekau,2009.Distribution and respiration of the high-latitude pelagic amphipod Themisto gaudichaudi in the Benguela Current in relation to upwelling intensity.Progress in Oceanography.83(1–4):237–241.
24.C.R. Asha Devi, R. Jyothibabu, P. Sabu, Josia Jacob, H. Habeebrehman, M.P. Prabhakaran, K.J. Jayalakshmi, C.T. Achuthankutty,2010.Seasonal variations and trophic ecology of microzooplankton in the southeastern Arabian Sea.Continental Shelf Research.30(9):1070–1084.
25.Vijayalakshmi R. Nair, R. Gireesh,2010.Biodiversity of chaetognaths of the Andaman Sea, Indian Ocean.Deep Sea Research Part II: Topical Studies in Oceanography.57(24–26):2135–2147.
26.JANNE E. SØREIDE, EVA LEU, JØRGEN BERGE, MARTIN GRAEVE, STIG FALK-PETERSEN,2010.Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic.Global Change Biology.16(11):3154–3163.
27.Silke Laakmann, Holger Auel,2010.Longitudinal and vertical trends in stable isotope signatures (δ13C and δ15N) of omnivorous and carnivorous copepods across the South Atlantic Ocean.Marine Biology.157(3):463-471.
28.Nikolaj G. Andersen, Torkel Gissel Nielsen, Hans Henrik Jakobsen, Peter Munk, Lasse Riemann,2011.Distribution and production of plankton communities in the subtropical convergence zone of the Sargasso Sea. II. Protozooplankton and copepods.Marine Ecology. Progress series.426:71-86.
29.Cornelia Jaspers, Lene Friis Møller, Thomas Kiørboe,2011.Salinity Gradient of the Baltic Sea Limits the Reproduction and Population Expansion of the Newly Invaded Comb Jelly Mnemiopsis leidyi.PLoS One.6(8):e24065.
30.Jessica R. Frost, Anneke Denda, Clive J. Fox, Charles A. Jacoby, Rolf Koppelmann, Morten Holtegaard Nielsen, Marsh J. Youngbluth,2012.Distribution and trophic links of gelatinous zooplankton on Dogger Bank, North Sea.Marine Biology.159(2):239-253.
31.Silke Laakmann, Holger Auel, Marc Kochzius,2012.Evolution in the deep sea: Biological traits, ecology and phylogenetics of pelagic copepods.Molecular Phylogenetics and Evolution.65(2):535–546.
32.Anna Schukat, Lena Teuber, Wilhelm Hagen, Norbert Wasmund, Holger Auel,2013.Energetics and carbon budgets of dominant calanoid copepods in the northern Benguela upwelling system.Journal of Experimental Marine Biology and Ecology.442:1-9.


更多关键字: 浮游生物多联采样网,浮游生物分层拖网,浮游生物网, MultiNet,浮游生物多联采样网,大型浮游生物网,深海浮游生物网
bottom
 
首 页 |  公司动态 |  产品目录 |  技术支持 |  合作伙伴 |  联系我们 |  诚聘英才
Copyright 2015 青岛水德仪器有限公司 版权所有
地址:青岛市城阳区中城路345-2号海都商务中心910室
电话:0532-87761284 邮箱:info@watertools.cn 鲁ICP备16045291号-1